Code: 20CE3502

III B.Tech - I Semester – Regular / Supplementary Examinations NOVEMBER 2024

HIGHWAY ENGINEERING (CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

Note: IRC 37 and 58 should be distributed

			BL	СО	Max. Marks		
	UNIT-I						
1	a)	List out the recommendations of Jayakar	L1	CO1	7 M		
		committee report. Mention how this helped					
		in road development in India?					
	b)	Explain with sketches the various factors	L2	CO1	7 M		
		controlling the alignment of roads.					
OR							
2	a)	Briefly outline the main features of various	L2	CO1	7 M		
		road patterns commonly in use. Explain star					
		and grid pattern with neat sketch.					
	b)	Explain the necessity and objectives of	L2	CO1	7 M		
		highway planning.					
UNIT-II							
3	a)	Define superelevation. Derive the equation	L4	CO2	7 M		
		for determining the superelevation.					

	b)	Write a short note on	L1	CO2	7 M			
	·	(i) Traffic Medians and (ii) Kerbs						
OR								
4	a)	Explain various measures that may be taken	L2	CO2	7 M			
		to prevent accidents.						
	b)	With neat sketches show various types of	L2	CO2	7 M			
		traffic signs, classify them in proper groups.						
UNIT-III								
5	a)	List out the advantages and disadvantages of	L1	CO3	7 M			
		rotary intersection.						
	b)	Draw a neat sketch of full cloverleaf and	L3	CO3	7 M			
		show the movement of traffic.						
		OR						
6	a)	Illustrate the test procedure for determining	L1	CO3	7 M			
		the CBR of soil in the laboratory.						
	b)	List out the desirable properties of	L2	CO3	7 M			
		aggregates to be used in road construction						
		and explain them.						
	1 ,	UNIT-IV						
7	a)	List out the pavement components and	L2	CO4	7 M			
		explain the functions of each component.		~				
	b)	Calculate the stresses at interior, edge and	L5	CO4	7 M			
		corner regions of a CC pavement using						
		Westergaard's stress equation. Use						
		following data.						
		Wheel load = 4800 kg						
		Modulus of elasticity of $CC = 3x10^5 \text{ kg/cm}^2$						

		Pavement thickness = 16cm					
		Poisson ratio of concrete = 0.15					
		Modulus of sub grade reaction = 6 kg/cm^3					
		Radius of contact area = 14 cm					
OR							
8	a)	Find the spacing between contraction joints	L5	CO4	7 M		
		for a 3.5m slab width having a thickness of					
		20 cm for plain concrete slab. The allowable					
		tensile stress values in concrete and steel are					
		0.8 and 1400 kg/m ² , coefficient of friction is					
		1.5. Unit wt. of $CC = 2400 \text{ kg/cm}^3$.					
	b)	Explain the design considerations for	L2	CO4	7 M		
		spacing of (i) Expansion joints and (ii)					
		Contraction joints.					
		UNIT-V					
9	a)	Enumerate the steps for the preparation of	L1	CO5	7 M		
		subgrade.					
	b)	Explain about different equipment's used	L2	CO5	7 M		
		for construction of cement concrete					
		pavements.					
OR							
10	a)	Discuss the principles and scope of soil-lime	L1	CO5	7 M		
		stabilization.					
	b)	Explain the factors influencing the	L2	CO5	7 M		
		properties of soil-cement stabilization.			, 1,1		
		properties of soil cement statinization.					